If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33^2+56^2=c^2
We move all terms to the left:
33^2+56^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+4225=0
a = -1; b = 0; c = +4225;
Δ = b2-4ac
Δ = 02-4·(-1)·4225
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-130}{2*-1}=\frac{-130}{-2} =+65 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+130}{2*-1}=\frac{130}{-2} =-65 $
| j/2+9=11 | | 2x=3=-4x-9 | | 3-7p-13p=11-20p | | (3x=8)+(2x+2)180 | | 2(n-4)-(6-3n)=4n | | 0/03x0/1=2/6 | | 15x-2=17x-16 | | -14=h/3-16 | | -11r+16=-11r | | 5n=2n–21 | | 5+8g=8g+5 | | 5(2x+3)-8x=1 | | 2m-13=-8m-27 | | 2/9d=4 | | 8x+17=11x-31 | | −6x+8=-3x-10−3x−10 | | x=5=2x+8 | | 3t+2+T-5+2t=15 | | x+(x+17)=100 | | -7v+4+10v=3v+4 | | 1/3x+3=21 | | w=2w+w+2w=30 | | 14v+6=295+7v)-4 | | 2x+17x=100 | | 24u+2=-12 | | 3(5-2r)-2(3r+1)=0 | | 3(x+4=-12 | | 7-7h=-7h+7 | | 3x+8=2x+1+10 | | 7−7h=-7h+7 | | x+2+2x=4x-27 | | (4(x-7))/(3)=(3(x+7))/(4) |